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A new third-order solution for bichromatic bi-directional water waves in finite depth
is presented. Earlier derivations of steady bichromatic wave theories have been
restricted to second-order in finite depth and third-order in infinite depth, while
third-order theories in finite depth have been limited to the case of monochromatic
short-crested waves. This work generalizes these earlier works. The solution includes
explicit expressions for the surface elevation, the amplitude dispersion and the vertical
variation of the velocity potential, and it incorporates the effect of an ambient
current with the option of specifying zero net volume flux. The nonlinear dispersion
relation is generalized to account for many interacting wave components with different
frequencies and amplitudes, and it is verified against classical expressions from the
literature. Limitations and problems with these classical expressions are identified.
Next, third-order resonance curves for finite-amplitude carrier waves and their three-
dimensional perturbations are calculated. The influence of nonlinearity on these curves
is demonstrated and a comparison is made with the location of dominant class I and
class II wave instabilities determined by classical stability analyses. Finally, third-order
resonance curves for the interaction of nonlinear waves and an undular sea bottom
are calculated. On the basis of these curves, the previously observed downshift/upshift
of reflected/transmitted class III Bragg scatter is, for the first time, explained.

1. Introduction
Monochromatic short-crested water waves occur in connection with, for example,

oblique reflection from seawalls and diffraction around detached breakwaters. As a
first linear approximation, they can be obtained by the superposition of two oblique
travelling wavetrains of equal frequency and amplitude. A second-order solution was
derived by Fuchs (1952), whereas Chappelear (1961) extended it to third-order. Hsu,
Tsuchiya & Silvester (1979) rederived the third-order solution with a different choice
of expansion parameter. Since then the literature on this subject has been extensive and
we shall only mention a few of the important contributions: Roberts (1983) developed
a high-order perturbation method for short-crested deep-water waves, while Roberts &
Peregrine (1983) treated the important limit of grazing angles, where the short-crested
deep-water waves become long-crested. Numerical computations of highly nonlinear
short-crested waves were presented by Roberts & Schwarts (1983) and Bryant (1985)
using collocation and Fourier transforms, respectively. Experimental investigations
have been presented by, for example, Hammack, Scheffner & Segur (1989), Hammack,
Henderson & Segur (2005) and Kimmoun, Ioualalen & Kharif (1999).

The theoretical description of irregular multi-directional waves is much less
developed, this is most probably due to the increased complexity. Sharma & Dean
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(1981) were the first to derive a second-order solution for bichromatic bi-directional
water waves, and this solution is the kernel of second-order irregular wave theory
which is obtained by double summation over pairs over interacting bichromatic waves.
Inspired by this work, a large number of papers have concentrated on the development
of second-order wavemaker theory for unidirectional and multi-directional irregular
waves (see e.g. Schäffer, 1996; Schäffer & Steenberg, 2003). However, beyond second-
order, theoretical descriptions of irregular waves are rare.

Longuet-Higgins & Phillips (1962) were the first to consider the problem of two
deep-water gravity waves travelling at an angle to each other, and they derived a
third-order expression for the resulting phase velocity modification due to mutual
interaction. A misprint in their general expression was later corrected by Hogan,
Gruman & Stiassnie (1988), who generalized their work to bi-directional gravity–
capillary waves in deep water. A third-order solution for the sum of two and three
collinear deep-water wavetrains was attempted by Pierson (1993), but his dispersion
relation was based on intuition rather than on consistent perturbation principles and
his results are incorrect. Zhang & Chen (1999) derived a third-order solution for
the interaction of three collinear deep-water wave components. This solution forms
the kernel of third-order irregular collinear wave theory, which is obtained by triple
summation over triplets of interacting waves. Unfortunately, their theory is limited
in practice by the assumption that all wave components can be approximated by
infinite-depth expressions, which means that not only the primary waves but also
their interactions (involving sum and difference frequencies) take place in infinite
depth. We shall discuss this limitation in § 4.2.

In the present work, we derive a third-order perturbation solution for bichromatic
bi-directional water waves in finite depth. The solution includes explicit expressions
for the surface elevation, the amplitude dispersion and the vertical variation of the
velocity potential, while the effect of an ambient current is also taken into account,
with the option of specifying zero net volume flux. The solution is an extension
of Sharma & Dean (1981) from second order to third order, it is an extension of
Hsu et al. (1979) from monochromatic to bichromatic short-crested waves, and it is
an extension of Zhang & Chen (1999) from collinear interactions in deep water to
directional interactions in finite depth.

We do acknowledge, that the Zakharov formulation (e.g. as given by Zakharov
1968, 1999; Stiassnie & Shemer 1984; Krasitskii 1994), in principle, allows us to
obtain third-order expressions for steady bichromatic bi-directional waves. The direct
outcome of such an evaluation is the surface elevation and the velocity potential at
the free surface. However, to establish the velocity field, we must invoke successive
approximations where the relationship between the potential at the free surface and
at the still-water level is inverted. Zhang & Chen (1999) made this evaluation for
bichromatic waves in infinite depth (in a single horizontal dimension), but so far,
generalized expressions valid in finite depth have not been established.

We also acknowledge that expressions for the nonlinear dispersion relation,
involving several interacting waves in finite depth, have previously been given in
the framework of the Zakharov kernel function T (k1, k2, k3, k4), for example, by
Stiassnie & Shemer (1984) and Agnon (1993). This kernel function must be evaluated
for pair-wise identical wavenumber vectors, i.e. T12 = T (k1, k2, k1 +δ1, k2 +δ2) and for
identical wavenumber vectors T11 = T (k1 + δ1, k1 + δ2, k1 + δ3, k1 + δ4), where δn for
n=1, 2, 3, 4 denote perturbation vectors approaching zero during the limiting process.
In infinite depth, this limiting process is straightforward and explicit expressions can
be found (see e.g. Hogan et al. 1988 & Zakharov 1999). However, in finite depth,
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it turns out that the Zakharov kernel function does not have a unique limit, and
that the limit depends on the direction of the perturbation vectors δn. So far, only
Janssen & Onorato (2005) have addressed this problem, and only for the case of
monochromatic unidirectional waves in finite depth. The new theory provided in this
paper may serve as a reference for future work on the extension and application of
the Zakharov formulations to finite water depth.

The present paper is organized in the following way. First, the governing equations
and the perturbation method are defined in § 2. Secondly, the third-order solution for
bichromatic bi-directional waves in finite depth is derived in § 3, which also includes a
subsection on the identification and removal of singularities and a simple application
of the theory. Thirdly, a discussion of the nonlinear dispersion relation is given in § 4,
which includes comparisons with the infinite-depth bichromatic solutions by Hogan
et al. (1988) and Zhang & Chen (1999), the finite-depth bichromatic solution by Agnon
(1993), the finite-depth monochromatic short-crested solution by Hsu et al. (1979)
and the infinite-depth monochromatic short-crested hig-order solution by Roberts
(1983). In § 5, we compute third-order resonance curves for unidirectional carrier
waves and their three-dimensional perturbation satellites. These curves are compared
to the location of the dominant class I and class II wave instabilities determined by
the numerical method of McLean (1982). In § 6, we compute the third-order resonance
curves for class III Bragg scattering, and the curves are compared to numerical results
obtained by Liu & Yue (1998) and Madsen, Fuhrman & Wang (2006). Concluding
remarks are given in § 7, with some additional results provided in the Appendix.

2. The governing equations and the perturbation method
2.1. Equations for fully nonlinear water waves

We consider the irrotational flow of an incompressible inviscid fluid with a free
surface and a horizontal bottom, and adopt a Cartesian coordinate system with the
x-axis and the y-axis located on the mean water plane (MWP) and with the z-axis
pointing vertically upwards. The fluid domain is bounded by the horizontal sea bed
at z = −h and by the free surface z = η(x, y, t), and the irrotationality of the flow is
expressed through the introduction of the velocity potential Φ defined by

u(x, y, z, t) ≡ ∂Φ

∂x
, v(x, y, z, t) ≡ ∂Φ

∂y
, w(x, y, z, t) ≡ ∂Φ

∂z
,

where u, v and w are the components of the particle velocity in the x, y and z

directions, respectively. Now, the governing equations for the fully nonlinear wave
problem consist of two linear equations (the Laplace equation and the kinematic
bottom condition)

∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= 0 for − h � z � η(x, y, t), (1)

∂Φ

∂z
= 0 at z = −h, (2)

and two nonlinear equations (the kinematic and dynamic surface conditions)

∂η

∂t
− ∂Φ

∂z
+

∂Φ

∂x

∂η

∂x
+

∂Φ

∂y

∂η

∂y
= 0 at z = η(x, y, t), (3)

∂Φ

∂t
+ gη +

1

2

((
∂Φ

∂x

)2

+

(
∂Φ

∂y

)2

+

(
∂Φ

∂z

)2)
= 0 at z = η(x, y, t). (4)
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We introduce the following variables defined directly on the free surface:

ũ ≡ u(x, y, η, t) ≡
(

∂Φ

∂x

)
z=η

, ṽ ≡ v(x, y, η, t) ≡
(

∂Φ

∂y

)
z=η

, (5)

w̃ ≡ w(x, y, η, t) ≡
(

∂Φ

∂z

)
z=η

, Ψ̃ ≡
(

∂Φ

∂t

)
z=η

, (6)

by which the nonlinear surface equations (3) and (4) can be reformulated to

∂η

∂t
− w̃ + ũ

∂η

∂x
+ ṽ

∂η

∂y
= 0, (7)

Ψ̃ + gη + 1
2
(ũ2 + ṽ2 + w̃2) = 0. (8)

2.2. The perturbation method combined with Taylor series expansions

In order to derive analytical solutions to the governing equations, we adopt the
classical perturbation method, which assumes that some parameter (ε) naturally
appearing in the equations, in our case the nonlinearity, is small. Often this analysis
is performed in dimensionless variables, in which case ε represents a given physical
quantity such as the wavenumber multiplied by the wave amplitude (ka) or the
wave amplitude divided by the water depth (a/h). We prefer, however, to perform the
analysis in dimensional variables, in which case ε has no physical meaning, but merely
appears as a marker convenient for collecting terms of various orders of magnitude.
Once the different solutions have been obtained, ε will be ignored.

An important part of the perturbation method is to express the velocity variables
at the free surface in terms of Taylor series expansions from the mean water datum
z = 0. Including the first three terms in this expansion, we obtain

ũ �
(

∂Φ

∂x
+ η

∂2Φ

∂x∂z
+ 1

2
η2 ∂3Φ

∂x∂z2
+ · · · .

)
z=0

, (9)

ṽ �
(

∂Φ

∂y
+ η

∂2Φ

∂y∂z
+ 1

2
η2 ∂3Φ

∂y∂z2
+ · · · .

)
z=0

, (10)

w̃ �
(

∂Φ

∂z
+ η

∂2Φ

∂z2
+ 1

2
η2 ∂3Φ

∂z3
+ · · · .

)
z=0

, (11)

Ψ̃ �
(

∂Φ

∂t
+ η

∂2Φ

∂t∂z
+ 1

2
η2 ∂3Φ

∂t∂z2
+ · · · .

)
z=0

. (12)

3. New solution for bichromatic bi-directional waves
3.1. First-order expressions

As a starting point for the perturbation method, we consider a first-order bi-directional
bichromatic progressive wave group made up of the two frequencies ωn and ωm. The
corresponding wavenumber vectors are defined by kn ≡ (knx, kny) and km ≡ (kmx, kmy),
and we express the first-order wave solutions by

η(1) = ε (an cos θn + bn sin θn) + ε(am cos θm + bm sin θm), (13)

Φ (1) = U · x + εFn cosh κn(z + h) (an sin θn − bn cos θn)

+ εFm cosh κm(z + h)(am sin θm − bm cos θm), (14)
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where U is an ambient current vector (constant in time and space), x ≡ (x, y) and
the phase functions are given by

θn ≡ ωnt − knxx − knyy, (15)

θm ≡ ωmt − kmxx − kmyy. (16)

For later use we introduce the amplitudes

cn ≡
√

a2
n + b2

n, cm ≡
√

a2
m + b2

m. (17)

By inserting (14) into the Laplace equation (1), we obtain

κn = |kn| =
√

k2
nx + k2

ny, κm = |km| =
√

k2
mx + k2

my, (18)

while the kinematic bottom condition (2) is automatically satisfied.
The remaining problem is to consider the nonlinear surface equations (7) and (8).

We insert (13) and (14) into (9)–(12), which again are substituted into (7) and (8).
Next, we collect terms of order O(ε) and obtain two independent homogeneous
equations. These are satisfied by the linear dispersion relations including a Doppler
shift from the ambient current

ωn = kn · U + ω1n, ω1n ≡
√

gκn tanhhκn, (19)

ωm = km · U + ω1m, ω1m ≡
√

gκm tanhhκm, (20)

and by

Fn =
−ω1n

κn sinhhκn

, Fm =
−ω1m

κm sinhhκm

. (21)

3.2. Second-order solution

The second-order solution for progressive bi-directional bichromatic waves was first
given by Sharma & Dean (1981). Their solution is rederived in this section as an
intermediate step towards the new third-order solution given in § 3.3.

In the derivation of the second-order surface elevation and the velocity potential,
it turns out to be convenient to start with the following pre-assessment. First, we
calculate

1

h

(
η(1)

)2
= ε2(A−

nm cos(θn − θm) + B−
nm sin(θn − θm))

+ ε2(A+
nm cos(θn + θm) + B+

nm sin(θn + θm))

+ ε2(A2n cos 2θn + B2n sin 2θn + A2m cos 2θm + B2m sin 2θm),

where the second-order amplitudes read

A±
nm =

1

h
(anam ∓ bnbm), B±

nm =
1

h
(ambn ± anbm), (22)

A2n =
1

2h

(
a2

n − b2
n

)
, B2n =

1

h
anbn, (23)

with equivalent expressions for A2m and B2m. Notice that the contributions from
the sum/difference frequencies are found by using the upper/lower signs in (22).
This simple calculation is relevant, because the governing equations involve quadratic
nonlinearities, and it defines the form (but not the magnitude) of the second-order
surface elevation. Now having the form of η(2), we can also establish the form (but
again not the magnitude) of the second-order velocity potential, simply by using the
linear relationship gη � −(Φt )(z =0) from (4).
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On the basis of this pre-assessment, we now look for second-order bound solutions
expressed by

η(2) = ε2G−
nm(A−

nm cos(θn − θm) + B−
nm sin(θn − θm))

+ ε2G+
nm(A+

nm cos(θn + θm) + B+
nm sin(θn + θm))

+ ε2G2n(A2n cos 2θn + B2n sin 2θn) + ε2G2m(A2m cos 2θm + B2m sin 2θm), (24)

Φ (2) = ε2F −
nm cosh κ−

nm(z + h)(A−
nm sin(θn − θm) − B−

nm cos(θn − θm))

+ ε2F +
nm cosh κ+

nm(z + h)(A+
nm sin(θn + θm) − B+

nm cos(θn + θm))

+ ε2F2n cosh 2κn(z + h)(A2n sin 2θn − B2n cos 2θn)

+ ε2F2m cosh 2κm(z + h)(A2m sin 2θm − B2m cos 2θm), (25)

where G−
nm, G+

nm, G2n, G2m, F −
nm, F +

nm, F2n, F2m are unknown transfer functions and
κ−

nm, κ+
nm are unknown wavenumbers to be determined.

Inserting (25) into the Laplace equation (1) leads to the determination of the sum
(upper signs) and difference (lower signs) wavenumbers

κ±
nm = |kn ± km| =

√
(knx ± kmx)2 + (kny ± kmy)2. (26)

Again, the kinematic bottom condition (2) is automatically satisfied. Therefore we
concentrate on satisfying the nonlinear surface conditions, i.e. we insert (13)–(14)
and (24)–(25) into (9)–(12), which again are substituted into (7) and (8). Terms of
order O(ε2) are collected and as a result, we obtain algebraic equations for the
determination of G−

nm, G+
nm, G2n, G2m, F −

nm, F +
nm, F2n and F2m. The self–self interaction

solutions read

G2n = 1
2
hκn(2 + cosh 2hκn)

coth hκn

sinh2 hκn

, F2n = −3

4

hω1n

sinh4 hκn

, (27)

with equivalent expressions for G2m and F2m. These are the well-known second-
order solutions for monochromatic waves. The transfer functions for the sub- and
super-harmonic interactions are more involved and can be expressed by

G+
nm = δnmΛ2(ω1n, kn, κn, ω1m, km, κm, κ+

nm), (28)

G−
nm = Λ2(ω1n, kn, κn, −ω1m, −km, κm, κ−

nm), (29)

F +
nm = δnmΓ2(ω1n, kn, κn, ω1m, km, κm, κ+

nm), (30)

F −
nm = Γ2(ω1n, kn, κn, −ω1m, −km, κm, κ−

nm), (31)

where

δnm =

{
1 for n �= m,
1
2

for n = m.
(32)

The function Λ2 used for the determination of G+
nm and G−

nm is defined by

Λ2 (ω1n, kn, κn, ω1m, km, κm, κ+
nm)

≡ gh

βnm

(ω1n + ω1m) cosh hκ+
nm

(
ω1n

(
κ2

m + kn · km

)
+ ω1m

(
κ2

n + kn · km

))
+

hκ+
nm

βnm

sinhhκ+
nm

(
g2kn · km + ω2

1nω
2
1m − ω1nω1m(ω1n + ω1m)2

)
, (33)
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where

βnm ≡ 2ω1nω1m((ω1n + ω1m)2 coshhκ+
nm − gκ+

nm sinhhκ+
nm), (34)

which is to be considered as a local variable. Similarly, the function Γ2 used for the
determination of F +

nm and F −
nm is defined by

Γ2 (ω1n, kn, κn, ω1m, km, κm, κ+
nm)

≡ h

βnm

(ω1nω1m(ω1n + ω1m)((ω1n + ω1m)2 − ω1nω1m))

− hg2

βnm

(
ω1n

(
κ2

m + 2kn · km

)
+ ω1m

(
κ2

n + 2kn · km

))
. (35)

For later use, we emphasize that according to (26), and (28)–(31) we have the following
second-order relations

κ±
mn = κ±

nm, G±
mn = G±

nm, F ±
mn = ±F ±

nm. (36)

Note that the second-order transfer functions for bichromatic bi-directional waves
defined by (28)–(31) with (33) and (35) are identical to the solution given by Sharma &
Dean (1981). Schäffer & Steenberg (2003) also gave this solution in connection with
the development of a second-order wavemaker theory for multi-directional waves.
Unfortunately, a typographical error appears in their formulation; the last term in
their equation (65) should be ω2

n + ω2
m rather than ω2

n ± ω2
m.

3.3. Third-order solution

In this section, we derive the new third-order solution for bi-directional bichromatic
waves. In this process, it is again convenient to start with a pre-assessment of the
third-order expressions by calculating (1/h)(η(1) +η(2))2 while collecting terms of order
ε3. This yields

ε3 (G2m + 2G+
nm)(A+

n2m cos(θn + 2θm) + B+
n2m sin(θn + 2θm))

+ ε3(G2m + 2G−
nm)(A−

n2m cos(θn − 2θm) + B−
n2m sin(θn − 2θm))

+ ε3(G2n + 2G+
nm)(A+

m2n cos(θm + 2θn) + B+
m2n sin(θm + 2θn))

+ ε3(G2n + 2G−
nm)(A−

m2n cos(θm − 2θn) + B−
m2n sin(θm − 2θn))

+ ε3G2n(A3n cos 3θn + B3n sin 3θn)

+ ε3G2m(A3m cos 3θm + B3m sin 3θm)

+ ε3(An cos θn + Bn sin θn + Am cos θm + Bm sin θm),

where the third-order amplitudes read

A
±
n2m =

an

(
a2

m − b2
m

)
∓ 2bnambm

2h2
, B

±
n2m =

bn

(
a2

m − b2
m

)
± 2anambm

2h2
, (37)

A
±
m2n =

am

(
a2

n − b2
n

)
∓ 2bmanbn

2h2
, B

±
m2n =

bm

(
a2

n − b2
n

)
± 2amanbn

2h2
, (38)

A3n =
an

(
a2

n − 3b2
n

)
2h2

, B3n =
bn

(
3a2

n − b2
n

)
2h2

. (39)

The expressions for A3m and B3m are analogous to the expressions for A3n and B3n,
while the expressions for An, Bn, Am and Bm are omitted because they will not appear
in the bound third-order solution. Again this calculation defines the form (but not the
magnitude) of the third-order surface elevation. Having the form of η(3), we establish
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the form (but not the magnitude) of the third-order velocity potential using the linear
relationship gη � − (Φt )(z =0) from (4).

On the basis of this pre-assessment, we now look for third-order bound solutions
expressed by

η(3) = ε3G+
n2m(A+

n2m cos(θn + 2θm) + B+
n2m sin(θn + 2θm))

+ ε3G−
n2m(A−

n2m cos(θn − 2θm) + B−
n2m sin(θn − 2θm))

+ ε3G+
m2n(A

+
m2n cos(θm + 2θn) + B+

m2n sin(θm + 2θn))

+ ε3G−
m2n(A

−
m2n cos(θm − 2θn) + B−

m2n sin(θm − 2θn))

+ ε3G3n(A3n cos 3θn + B3n sin 3θn)

+ ε3G3m(A3m cos 3θm + B3m sin 3θm), (40)

and

Φ (3) = ε3F +
n2m cosh κ+

n2m(z + h)(A+
n2m sin(θn + 2θm) − B+

n2m cos(θn + 2θm))

+ ε3F −
n2m cosh κ−

n2m(z + h)(A−
n2m sin(θn − 2θm) − B−

n2m cos(θn − 2θm))

+ ε3F +
m2n cosh κ+

m2n(z + h)(A+
m2n sin(θm + 2θn) − B+

m2n cos(θm + 2θn))

+ ε3F −
m2n cosh κ−

m2n(z + h)(A−
m2n sin(θm − 2θn) − B−

m2n cos(θm − 2θn))

+ ε3F3n cosh 3κn(z + h)(A3n sin 3θn − B3n cos 3θn)

+ ε3F3m cosh 3κm(z + h)(A3m sin 3θm − B3m cos 3θm)

+ ε3F13n cosh κn(z + h)(an sin θn − bn cos θn)

+ ε3F13m cosh κm(z + h)(am sin θm − bm cos θm), (41)

where G
±

n2m, G
±
m2n, G3n, G3m, F

±
n2m, F

±
m2n, F3n, F3m, F13n, F13m are unknown transfer

functions and κ
±
n2m, κ

±
m2n are unknown wavenumbers to be determined.

At third order, the phase functions (15) and (16) now incorporate the frequencies

ωn = kn · U + ω1n(1 + ε2ω3n), (42)

ωm = km · U + ω1m(1 + ε2ω3m), (43)

where ω3n and ω3m define the third-order amplitude dispersion, which is necessary
in order to remove secular terms from the expansion. In order to determine the
wavenumbers, we insert (41) into the Laplace equation (1) and obtain

κ
±

n2m = |kn ± 2km| =
√

(knx ± 2kmx)2 + (kny ± 2kmy)2, (44)

κ
±

m2n = |km ± 2kn| =
√

(kmx ± 2knx)2 + (kmy ± 2kny)2. (45)

Again, the kinematic bottom condition (2) is automatically satisfied by (41). Therefore
we concentrate on satisfying the nonlinear surface conditions, i.e. we insert (13)–(14),
(24)–(25) and (40)–(41) into (9)–(12), which again are substituted into (7) and (8).
Terms of O(ε3) are collected and as a result, we obtain algebraic equations for the
determination of G

±
n2m, G

±
m2n, G3n, G3m, F

±
n2m, F

±
m2n, F3n and F3m. The self–self–self

interaction solutions read

G3n =
3

128

h2κ2
n

sinh6 hκn

(14 + 15 cosh 2hκn + 6 cosh 4hκn + cosh 6hκn), (46)

F3n =
1

32

h2κnω1n

sinh7 hκn

(−11 + 2 cosh 2hκn), (47)
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with equivalent expressions for G3m and F3m. These are the well-known Stokes
solutions for monochromatic waves. The transfer functions for the third-order sum-
and difference-interactions are more involved and can be expressed by the functions

G+
n2m = δn2mΛ3(ω1n, kn, κn, ω1m, km, κm, κ+

nm, κ+
n2m, G+

nm, F +
nm), (48)

G+
m2n = δm2nΛ3(ω1m, km, κm, ω1n, kn, κn, κ

+
mn, κ

+
m2n, G

+
mn, F

+
mn), (49)

G−
n2m = Λ3(ω1n, kn, κn, −ω1m, −km, κm, κ−

nm, κ−
n2m, G−

nm, F −
nm), (50)

G−
m2n = Λ3(ω1m, km, κm, −ω1n, −kn, κn, κ

−
mn, κ

−
m2n, G

−
mn, F

−
mn), (51)

F +
n2m = δn2mΓ3(ω1n, kn, κn, ω1m, km, κm, κ+

nm, κ+
n2m, G+

nm, F +
nm), (52)

F +
m2n = δm2nΓ3(ω1m, km, κm, ω1n, kn, κn, κ

+
mn, κ

+
m2n, G

+
mn, F

+
mn), (53)

F −
n2m = Γ3(ω1n, kn, κn, −ω1m, −km, κm, κ−

nm, κ−
n2m, G−

nm, F −
nm), (54)

F −
m2n = Γ3(ω1m, km, κm, −ω1n, −kn, κn, κ

−
mn, κ

−
m2n, G

−
mn, F

−
mn), (55)

where

δn2m = δm2n =

{
1 for n �= m,
1
3

for n = m.
(56)

The function Λ3 used for the determination of G
±
n2m and G

±
m2n is defined by

Λ3(ω1n, kn, κn, ω1m, km, κm, κ+
nm, κ+

n2m, G+
nm, F +

nm)

≡ G+
nm

βn2m

(
gh

(
2κ2

m + kn · km

)
αn2m − hω3

1mγn2m

)
− F +

nm

βn2m

(coshhκ+
nm

(
hω1mαn2m

(
2κ2

m + κ2
n + 3kn · km

)
+ ghγn2m

(
κ2

m + kn · km

))
− hω1m (2ω1m + ω1n) γn2mκ+

nm sinhhκ+
nm)

+
h2αn2m

4βn2m

(
ω2

1m

(
4κ2

m + 2kn · km

)
+ ω1nω1m

(
κ2

n + 2kn · km

))
+

h2αn2m

4ω1mω1nβn2m

(2 + cosh 2hκm)

sinh2 hκm

g2κ2
m

(
κ2

n + 2kn · km

)
+

h2αn2m

4βn2m

cosh 2hκm

sinh4 hκm

(
6κ2

m + 3kn · km

)
ω2

1m +
3gh2γn2m

4ω1nβn2m

cosh 2hκm

sinh4 hκm

ω2
1mkn · km

− gh2γn2m

4ω1nβn2m

((
2κ2

n − 2kn · km

)
ω2

1m +
(
2κ2

m + κ2
n

)
ω1mω1n +

(
2κ2

m − 2kn · km

)
ω2

1n

)
− gh2γn2mκ2

m

4ω1mβn2m sinh2 hκm

(
ω2

1n (2 + cosh 2hκm) + 6ω1m (2ω1m + ω1n)
)
, (57)

which incorporates the local variables

βn2m ≡ ω1m((2ω1m + ω1n)
2 coshhκ+

n2m − gκ+
n2m sinhhκ+

n2m), (58)

αn2m ≡ (2ω1m + ω1n) coshhκ+
n2m, γn2m ≡ κ+

n2m sinhhκ+
n2m. (59)

Similarly, the function Γ3, used for the determination of F
±
n2m and F

±
m2n, is defined by

Γ3(ω1n, kn, κn, ω1m, km, κm, κ+
nm, κ+

n2m, G+
nm, F +

nm)

≡ − G+
nm

βn2m

(
hg2

(
2κ2

m + kn · km

)
− hω3

1m (2ω1m + ω1n)
)

+
F +

nm

βn2m

gh cosh hκ+
nm

(
ω1m(κ+

nm)2 + (3ω1m + ω1n)
(
κ2

m + kn · km

))
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− F +
nm

βn2m

hκ+
nmω1m (2ω1m + ω1n)

2 sinhhκ+
nm +

3gh2κ2
m (2ω1m + ω1n)

2

2βn2m sinh2 hκm

− gh2

2ω1nβn2m

(
ω2

1n (3ω1m + ω1n)
(
kn · km − κ2

m

)
+ 2ω2

1m (ω1n + ω1m)
(
kn · km − κ2

n

))
− gh2κ2

m (2 + cosh 2hκm)

4ω1mω1nβn2m sinh2 hκm

(
g2

(
2kn · km + κ2

n

)
− ω3

1n (2ω1m + ω1n)
)

− 3gh2ω2
1m cosh 2hκm

2ω1nβn2m sinh4 hκm

(
(ω1n + ω1m) kn · km + ω1nκ

2
m

)
. (60)

The third-order correction to the first-order potential (necessary to remove secular
terms) is determined by

F13n = c2
nω1nκn

(
−13 + 24 cosh 2hκn + cosh 4hκn

64 sinh5 hκn

)
+ c2

mΥ13n, (61)

F13m = c2
mω1mκm

(
−13 + 24 cosh 2hκm + cosh 4hκm

64 sinh5 hκm

)
+ c2

nΥ13m, (62)

where

Υ13n = Υ (ω1n, kn, κn, ω1m, km, κm, κ±
nm, G±

nm, F ±
nm), (63)

Υ13m = Υ (ω1m, km, κm, ω1n, kn, κn, κ
±
mn, G

±
mn, F

±
mn), (64)

and where

Υ (ω1n, kn, κn, ω1m, km, κm, κ±
nm, G±

nm, F ±
nm)

≡ g

4ω1nω1m coshhκn

(
ω1m

(
κ2

n − κ2
m

)
− ω1nkn · km

)
+

(G+
nm + G−

nm)

4hω2
1nω1m coshhκn

(
g2kn · km + ω3

1mω1n

)
− 1

4h coshhκn

(F +
nmκ+

nm sinhhκ+
nm + F −

nmκ−
nm sinhhκ−

nm)

+
F +

nmg coshhκ+
nm

4hω2
1nω1m coshhκn

(
(ω1n + ω1m)

(
kn · km + κ2

m

)
− ω1m(κ+

nm)2
)

+
F −

nmg coshhκ−
nm

4hω2
1nω1m coshhκn

(
(ω1n − ω1m)

(
kn · km − κ2

m

)
− ω1m(κ−

nm)2
)
. (65)

Finally, the third-order correction to the frequency (necessary to remove secular
terms) reads

ω3n = c2
nκ

2
n

(
8 + cosh 4hκn

16 sinh4 hκn

)
+ c2

mκ2
mΩnm, (66)

ω3m = c2
mκ2

m

(
8 + cosh 4hκm

16 sinh4 hκm

)
+ c2

nκ
2
nΩmn, (67)

where

κ2
mΩnm = Ω(ω1n, kn, κn, ω1m, km, κm, κ±

nm, G±
nm, F ±

nm), (68)

κ2
nΩmn = Ω(ω1m, km, κm, ω1n, kn, κn, κ

±
mn, G

±
mn, F

±
mn), (69)
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and

Ω(ω1n, kn, κn, ω1m, km, κm, κ±
nm, G±

nm, F ±
nm)

≡
((

2ω2
1m + ω2

1n

)
4ω1nω1m

kn · km + 1
4
κ2

m

)
+ (G+

nm + G−
nm)

(
gkn · km

4hω1nω1m

− ω2
1m

4gh

)
+

ω1n

4gh
(F +

nmκ+
nm sinhhκ+

nm + F −
nmκ−

nm sinhhκ−
nm)

− F +
nm coshhκ+

nm

4hω1nω1m

(
(ω1n − ω1m)

(
κ2

m + kn · km

)
+ ω1m(κ+

nm)2
)

+
F −

nm coshhκ−
nm

4hω1nω1m

(
(ω1n + ω1m)

(
κ2

m − kn · km

)
− ω1m(κ−

nm)2
)
. (70)

This completes the third-order theory, which provides explicit expressions for the
surface elevation, the amplitude dispersion and the vertical variation of the velocity
potential for bichromatic bi-directional water waves in finite depth (expressed in terms
of the mean water depth h). Note, that in order to use the theory for wave generation
in various numerical models, additional expressions for the velocity potential at the
free surface are required (see Appendix).

3.4. The time-averaged volume flux

The time-averaged volume flux vector is defined by

M ≡
∫ 0

−h

∇Φdz +

∫ η

0

∇Φdz, (71)

where ∇ is the horizontal gradient operator, while the overbar represents the time-
averaging process. Consistent with (9)–(12), we evaluate the second integral in (71)
by using Taylor series expansions from z = 0, i.e.∫ η

0

∇Φdz �
∫ η

0

∇
(

Φ + ζ
∂Φ

∂z
+ 1

2
ζ 2

∂2Φ

∂z2
+ · · ·

)
z=0

dζ . (72)

By substituting the expressions for Φ (1), Φ (2), Φ (3) and η(1), η(2), η(3) into (72) and (71),
we obtain the result

M = hU+ε2

(
c2
nω1n

2κn

coth hκn

)
kn + ε2

(
c2
mω1m

2κm

coth hκm

)
km + O(ε4). (73)

Under certain conditions, e.g. in closed wave tanks, M will be zero, and in this case
(73) can be used to determine the resulting return current, which becomes

U = −ε2

(
c2
nω1n

2hκn

coth hκn

)
kn − ε2

(
c2
mω1m

2hκm

coth hκm

)
km. (74)

3.5. Identification and removal of singularities

For certain combinations of wavenumbers and wave angles, singularities appear in
the transfer functions G−

n2m, F −
n2m and G−

m2n, F −
m2n. Similar problems were discussed

by Roberts (1983) in connection with monochromatic short-crested waves in infinite
depth. The singularities originate from the division by βn2m defined in (58) and can
be traced to roots in the functions
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(G−
n2m,F −

n2m): gκ−
n2m tanh hκ−

n2m − (ω1n − 2ω1m)2 = 0, (75)

(G−
m2n,F

−
m2n): gκ−

m2n tanh hκ−
m2n − (ω1m − 2ω1n)

2 = 0, (76)

where κ−
n2m and κ−

m2n are defined in (44) and (45). We note that ω1n − 2ω1m and
ω1m − 2ω1n represent the frequencies of the bound waves with wavenumbers κ−

n2m

and κ−
m2n, and that (75) and (76) actually express the mismatches between bound

and free wavenumbers in a quartet interaction. Owing to harmonic resonance, these
mismatches may go to zero for certain combinations of wavenumbers and wave angles.

In order to analyse (75) and (76), we define the interacting wavenumber vector
components by

knx = κ (1 + ρ) sin ϕ, kny = κ (1 + ρ) cos ϕ,

kmx = κ (1 − ρ) sin ϕ, kmy = − κ (1 − ρ) cos ϕ,

i.e. ϕ → 90◦ corresponds to the collinear limit, while ϕ → 0◦ corresponds to the
colliding limit. The roots ϕr of (75) and (76) are, respectively, shown in figures 1(a)
and 1(b) as functions of ρ for discrete values of hκ . In general, we notice that ϕr → 90◦

as ρ → 0, in agreement with the monochromatic case considered by Roberts (1983).
The roots of (75) occur for ρ < 0.4 and are confined to a narrow region 84◦ < ϕr � 90◦,
which shrinks for decreasing values of hκ . In contrast, the roots of (76) cover the
complete interval 0◦ � ϕr � 90◦. In deep water, they occur only for ρ < 0.6. As the
depth is decreased, this gradually reduces to ρ < 0.5 (with hκ = 1.2), before ultimately
growing to encompass the full range of ρ in shallow water.

Alternatively, we may determine the roots ρr of (75) and (76) for given wave angles
ϕ. Based on figures 1(a, b) we can conclude that (76) will always have one root ρr,1,
while (75) will have either two roots ρr,1 and ρr,2 (for 84◦ <ϕ � 90◦) or zero roots. It
turns out that the singularities are simple poles, and we can generally remove these
poles from a function G by using

G̃ = G −
∑

j

bj

(ρ − ρr,j )
, bj = lim

ρ→ρr,j

{(ρ − ρr,j )G}, (77)

where the tilde indicates the function after removal of the singularity. By the use of
(77) it is straightforward to obtain reliable results for the transfer functions G−

n2m, F −
n2m

and G−
m2n, F −

m2n. As an example, Figure 1(c) shows the variation of G−
m2n and G̃−

m2n

as a function of ρ for the case of ϕ =40◦ and κh = 1.2. We notice that the function

G̃−
m2n has a smooth behaviour near the original singularity and that it resembles the

variation of G+
m2n.

3.6. Bichromatic short-crested wave example

We illustrate the third-order solution by considering the following case of
bichromatic short-crested waves in a depth h = 10 m: ωn = 2π × 0.15 s−1, an = 1.3 m,

ϕn = 10◦, ωm = 2π × 0.10 s−1, am = 1.0 m, ϕm = − 10◦ where kn = κn(cosϕn, sin ϕn) and
km = κm(cos ϕm, sin ϕm). Figure 2(a) shows a perspective view of the third-order surface
elevation. With angles so close to the collinear limit, the wave pattern actually becomes
rather long crested, but nevertheless the surface shape is much more rounded than the
equivalent monochromatic long-crested case. Figure 2(b) shows the first- and third-
order surface elevations along the centreline (i.e. y = 0), while figure 2(c) shows the
first- and third-order velocity profiles at the centrepoint (x, y) = (0, 0). The relevant
coefficients corresponding to figures 2(a)(c) are given in table 1 to aid in checking
implementation of the theory.
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Figure 1. Identification and removal of singularities in the sub-harmonic transfer functions.
(a) Roots ϕr of (75) as function of ρ. (b) Roots ϕr of (76) as function of ρ. (c) Sub- and
super-harmonic transfer functions for the case of ϕ = 40◦ and κh= 1.2. (i) G−

m2n (sub-harmonic);

(ii) G̃−
m2n (filtered sub-harmonic); (iii) G+

m2n (super-harmonic).
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Figure 2. Third-order solution for a bichromatic short-crested wave in finite depth.
Specifications: h = 10 m, an = 1.3 m, am = 1.0 m, ωn =2π ×0.15 s−1, ωm = 2π ×0.10 s−1, ϕn = 10◦,
ϕm = −10◦, kn = κn(cosϕn, sin ϕn), km = κm(cosϕm, sin ϕm). (a) Perspective plot of the third-order
surface elevation. (b) Surface elevation along the centreline (y=0): first-order theory (dashed
line); Third-order theory (full line). (c) Velocity profile at the centre point (x, y) = (0,0):
first-order theory (i); third-order theory (iii).
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Surface elevation Velocity potential Wavenumbers

ω1n 0.9127 Fn −6.5784 κn 0.10737

ω1m 0.6049 Fm −13.2958 κm 0.06514

G−
nm −1.4060 F −

nm 32.3669 κ−
nm 0.05125

G+
nm 3.1320 F +

nm −6.4505 κ+
nm 0.17004

G2n 2.5773 F2n −2.4552

G2m 4.6356 F2m −19.0648

G−
n2m −2.0753 F −

n2m −65.718 κ−
n2m 0.04703

G+
n2m 17.6333 F +

n2m −8.0446 κ+
n2m 0.23407

G−
m2n −4.8946 F −

m2n −14.8841 κ−
m2n 0.15513

G+
m2n 12.8636 F +

m2n −1.9582 κ+
m2n 0.27684

G3n 3.5572 F3n −0.1182

G3m 9.3713 F3m −10.705

F13n 0.1584

F13m 0.4267

Table 1. Third-order bichromatic short-crested wave in finite depth. Coefficients for the
solution shown in figure 2.

4. The nonlinear dispersion relation for bichromatic interactions
4.1. Generalization of the dispersion relation

One of the key results of the new theory is the third-order amplitude dispersion for
interacting bichromatic bi-directional waves in finite depth. This is given by (42) with
ω3n defined by (66). It is straightforward to generalize this result to more than two
interacting waves, in which case we obtain

ωn = kn · U + ω1n

(
1 + c2

nκ
2
n

(
8 + cosh 4hκn

16 sinh4 hκn

)
+

∑
m�=n

c2
mκ2

mΩnm

)
, (78)

where ω1n is given by (19), cn and cm are defined by (17), and Ωnm is given by (68)–(70).
In the special case of zero net volume flux, the return current is determined by

U = −
(

c2
nω1n

2hκn

coth hκn

)
kn −

∑
m�=n

(
c2
mω1m

2hκm

coth hκm

)
km. (79)

These expressions, which are given in terms of the mean water depth h, allow for an
assessment of the amplitude dispersion in several interacting waves, an issue which
we will pursue in § 5 in connection with resonance conditions for finite-amplitude
carrier waves and in § 6 in connection with nonlinear Bragg scattering.

Figure 3 shows the variation of the amplitude dispersion function Ωnm as a function
of hκn and hκm covering the range from shallow water to three times the conventional
deep-water limit. Two different bichromatic interactions are considered: collinear
interaction in figure 3(a) and a short-crested interaction with wave angles ϕn = 30◦

and ϕm = −30◦ in figure 3(b). In both cases, we notice that the largest values of
Ωnm (i.e. the largest influence on ωn) occur when hκm <hκn, i.e. longer waves have a
stronger influence on shorter waves than vice versa.
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Figure 3. The amplitude dispersion function Ωnm for bi-chromatic short-crested interactions
as a function of wavenumbers hκn and hκm. Definition of wavenumber vectors:
kn = κn(cosϕn, sin ϕn), km = κm(cosϕm, sin ϕm). (a) Collinear interaction, i.e. ϕn = 0◦, ϕm = 0◦.
(b) Short-crested interaction with ϕn = 30◦, ϕm = −30◦.

4.2. Bichromatic short-crested interactions in infinite depth

Longuet-Higgins & Phillips (1962) were the first to calculate the change in phase
speed of one train of gravity waves in the presence of another in infinite depth. A
misprint in their solution was later corrected by Hogan et al. (1988), who extended
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their solution to cover gravity-capillary waves in infinite depth. This extension was
based on Zakharov’s (1968) equation and it was given in terms of the Zakharov
kernel T (k1, k2, k3, k4). For gravity waves (no current) the solution by Hogan et al.
can be expressed by

ωn = ω1n

(
1 + c2

nκ
2
n

(
2π2

κ3
n

T1111

)
+ c2

mκ2
m

(
4π2ω1m

κ3
mω1n

T1212

))
, (80)

where T1111 ≡ T (k1, k1, k1, k1) and T1212 ≡ T (k1, k2, k1, k2), while ω1n and ω1m here
represent the infinite-depth limits of (19).

Unfortunately, it turns out that the determination of T1111 and T1212 requires a limit-
ing process, where the identical wavenumber vectors must be perturbed slightly, i.e.

T1212 = lim
|δj |→0

T (k1 + δ1, k2 + δ2, k1 + δ3, k2 + δ4), (81)

T1111 = lim
|δj |→0

T (k1 + δ1, k1 + δ2, k1 + δ3, k1 + δ4). (82)

According to Janssen & Onorato (2005), the perturbation vectors should generally
satisfy the resonance condition of the Zakharov equation, i.e.

δ1 + δ2 = δ3 + δ4. (83)

In infinite depth, the outcome of the limiting process does not depend on the
directions of the perturbation vectors (see e.g. Zakharov 1999), and the limit can be
determined numerically or analytically. Zakharov (1999) gave an analytical result,
which unfortunately includes some misprints. Hogan et al. (1988) found that (80) is
in agreement with the corrected explicit expression by Longuet-Higgins & Phillips
(1962).

For the case of collinear waves in infinite depth, (80) simplifies to

ωn =
√

gκn

(
1 + 1

2
c2
nκ

2
n + c2

mκ2
m

(
κn

κm

λ

))
, (84)

where

λ =
ω1n

ω1m

for κm > κn, λ =
ω1m

ω1n

for κm < κn.

This expression has been given by, for example, Zakharov (1999) and Zhang & Chen
(1999).

We note that the self–self interaction term in (84) obviously agrees with the deep-
water limit of the similar term in (78). We shall therefore concentrate on a comparison
between the infinite-depth expression λκn/κm and the finite-depth expression defined
by Ωnm. Figure 4 shows the percentage difference between the two in the deep-water
regime as a function of hκn and hκm ranging from 3 to 9. We notice that discrepancies
show up in a band along the diagonal, i.e. when hκn and hκm have similar magnitudes.
The explanation is as follows. In the derivation of (84), it has been assumed that
ω1n → √

gκn, ω1m → √
gκm and that tanh(h(κn ± κm)) → 1. This means that all

interactions, including all possible sum and difference wavenumbers are assumed to
take place in infinite depth. This assumption is generally not valid in practice, and
explains why inaccuracies show up in a band along the diagonal in figure 4, where
κn and κm are of similar magnitude. Surprisingly, this limitation in the infinite-depth
theories of Longuet-Higgins & Phillips (1962), Hogan et al. (1988), Zakharov (1999)
and Zhang & Chen (1999) has not previously been discussed, and in order to avoid
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λκn/κm defined by (84) for infinite depth. Collinear interactions.

potential inaccuracies, for example, in the description of irregular wavetrains, we
recommend using the new finite-depth formulation under all circumstances.

4.3. Bichromatic short-crested interactions in finite depth

Finite-depth expressions for the Zakharov kernels T (k1, k2, k3, k4) were given by,
for example, Stiassnie & Shemer (1984); however, Agnon (1993), to our knowledge,
was the first to consider the nonlinear dispersion relation in mutually interacting
wavetrains in finite depth. His expression has the same form as (80), but with kernels
modified to a finite depth. Unfortunately, he did not address the problem of evaluating
T1111 and T1212 through the limiting process shown in (81)–(83), which is a non-trivial
task. We have attempted to evaluate Agnon’s expressions in finite depth, but have not
been able to make these agree with (78). Apparently, the problem is that the Zakharov
kernel function does not have a unique limit in finite depth, and the result depends
on the direction of the perturbation vectors δj . So far only Janssen & Onorato (2005)
have addressed this problem, and only for the case of monochromatic unidirectional
waves in finite depth. The new theory provided in this paper may serve as a reference
for future work on the application of Zakharov equations in finite depth.

4.4. Monochromatic short-crested interactions

When the frequencies and the amplitudes of the interacting wavetrains are identical,
the present theory simplifies to the case of monochromatic short-crested waves.
In this case, we may use ωm =ωn, kmx = knx , kmy = − kny and am = an = a/2,
bm = bn = 0. With this choice, the first-order phase functions in (13) simplify to
θn = (ωnt −knxx −knyy) and θm = (ωnt −knxx +knyy); the second-order phase functions
in (24) simplify to θn+θm = (2ωnt −2knxx), θn−θm = (2knyx), 2θn = (2ωnt −2knxx−2knyy)
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Figure 5. The amplitude dispersion function Ωnm for monochromatic short-crested inter-
actions as a function of wavenumber hκ and wave angle ϕ. Definition of wavenumber vectors:
kn = κ(sin ϕ, cosϕ), km = κ(sin ϕ, − cosϕ).

and 2θm = (2ωnt − 2knxx + 2knyy); while the third-order phase functions in (40)
simplify to θn + 2θm = (3ωnt − 3knxx + knyy), θn − 2θm = (ωnt − knxx + 3knyy), 2θn +
θm = (3ωnt −3knxx − knyy), 2θn − θm =(ωnt − knxx −3knyy), 3θn =(3ωnt −3knxx −3knyy)
and 3θm = (3ωnt − 3knxx + 3knyy). It is straighforward to show that the present
theory simplifies to the third-order solution by Hsu et al. (1979), except for the
following discrepancy. While we have chosen to eliminate third-order secular terms
by adding the F13n-term to the velocity potential, Hsu et al. used an alternative,
but equivalent, adjustment of the surface elevation (the b11 term in their equation
(58)). This is a free choice and both formulations are consistent steady third-order
solutions.

The monochromatic short-crested case may conveniently be defined by the
wavenumber vectors kn = κ(sin ϕ, cos ϕ) and km = κ(sin ϕ, − cos ϕ). Now Ωnm can
be plotted as a function of hκ and ϕ, as shown in figure 5 for hκ ranging from
shallow water to deep water. Note that for ϕ > 45◦, the angle between the receiving
wave and the interacting wave is less than 90◦ and in this case the interacting wave
will have a component which is in the direction of the receiving wave. This results in
a positive value of Ωnm. For ϕ = 45◦, the two waves cross each other at right angles
and consequently Ωnm → 0. For ϕ < 45◦, the interacting wave will have a component
in the opposite direction of the receiving wave, which leads to negative values of Ωnm.

Roberts (1983) computed a twenty-seventh-order perturbation solution to mono-
chromatic short-crested waves in infinite depth. A comparison with his solution makes
it possible to quantify the applicability of the third-order theory to finite-amplitude
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Figure 6. The nonlinear frequency of a short-crested wave as a function of the wave steepness
squared. (a) Wave angles ϕ covering the interval from 0◦ to 80◦. Third-order theory is shown
as full lines. Dashed lines are from the twenty-seventh-order solution by Roberts (1983), his
figure 5. (b) The unidirectional case of ϕ = 90◦. (i) Third-order theory for a single wave;
(ii) the limit of third-order short-crested theory. Dashed line based on Cokelet (1977).

waves. Again we define the wavenumber vectors as shown above, i.e. ϕ = 0◦

corresponds to purely standing waves and ϕ = 90◦ corresponds to collinear progressive
waves. We use U = 0 and cn = cm = a/2, hence (78) simplifies to

ωn = ω1n

(
1 + 1

4
κ2a2

(
Ωnm +

8 + cosh 4hκ

16 sinh4 hκ

))
.

Figure 6(a) shows the relative nonlinear frequency ωn/ω1n as a function of the wave
steepness squared (κ2a2) for a variety of angles ϕ. The third-order theory is shown
as bold straight lines, while the high-order solution by Roberts (1983) is shown as
dashed lines. For midrange values of ϕ, the surface elevation has a pyramidal shape,
which is associated with relatively large maximum amplitudes, and in this range, the
third-order theory is seen to be fairly accurate for κa as high as 0.6. Discrepancies
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rapidly increase for 75◦ <ϕ � 90◦, in which case the surface shapes start to become
long-crested.

Figure 6(b) shows ωn/ω1n in the collinear limit of ϕ = 90◦. In this case the dashed
line represents the solution by Cokelet (1977), while the third-order theory has
been applied in two different ways: (i) accounting for the third-order single-wave
theory for a progressive wave with steepness κa, and in this case the agreement
with Cokelet (1977) is extraordinarily good; (ii) accounting for the third-order short-
crested solution, which consists of two identical components each with steepness κa/2.
Obviously, the short-crested solution does not converge towards the monochromatic
single-wave solution for ϕ → 90◦ and instead of a slope of 1/2 κ2a2, it leads to a slope
of 3/8 κ2a2, significantly underestimating the effect of the amplitude dispersion. This
problem of grazing angles was treated by Roberts & Peregrine (1983), who derived a
special ‘near-field’ solution under the assumption that the derivatives in the direction
along the crest (the y-direction) are small compared with those in the direction
of propagation (the x-direction). As a consequence, the sinusoidal functions in the
y-direction were replaced by Jacobian elliptic functions, and the resulting nonlinear
frequency was expressed by

ωn = ω1n(1 + κ2a2Ω∗), Ω∗ =
1

4

(
1 +

1

m
− π2

4mK2

)
,

with K(m) being the complete elliptic integral of the first kind. In terms of nonlinear
dispersion, this expression is able to bridge the gap between the unidirectional Stokes
solution and the monochromatic short-crested solution as Ω∗ approaches 1/2 for
m → 1 and 3/8 for m → 0.

We emphasize that the general bichromatic short-crested solution does not have a
similar problem with grazing angles. First of all, the nonlinear dispersion relation (78)
has a continous transition from the grazing short-crested case to the collinear case
(as long as the interacting frequencies are different). Secondly, the surface pattern in
the grazing short-crested case is significantly more rounded for bichromatic waves
than for monochromatic waves (see figure 2), which means that there is less need
for a special treatment of y-derivatives versus x-derivatives. Thirdly, the bichromatic
short-crested solution does not have a singularity at ϕ = 90◦, and therefore there will
be no abrupt transition to the collinear case. As shown in figure 1(a, b) singularities
do appear, but at other angles, and they can be removed as discussed in § 3.5.

5. Resonance conditions for finite-amplitude carrier waves and their
three-dimensional perturbations

In this section, we use the new third-order theory to evaluate the resonance
conditions for the interaction of finite-amplitude waves and infinitesimal three-
dimensional perturbations of arbitrary wavelength. In this connection, we shall
demonstrate the importance of amplitude dispersion for the location of the resonance
curves. The dominant instabilities can obviously not be detected by the present theory,
and for this purpose we involve the stability method presented by McLean (1982).

McLean considered the stability of finite-amplitude unidirectional waves to three-
dimensional perturbations. At first, he expressed the fully nonlinear governing
equations in a frame of reference moving with the steady two-dimensional carrier
wave. Next, the three-dimensional infinitesimal perturbations were superimposed on
the steady wave, and the governing equations were linearized with respect to the
perturbations with boundary conditions satisfied on the unperturbed free surface. For
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Figure 7. Resonance curves of class I for unidirectional carrier waves (i.e. ϕ = 90◦).
Third-order dispersion relation: (i) κa = 0.0; (ii) κa = 0.1; (iii) κa = 0.2; (iv) κa = 0.3. Points
correspond to dominant instabilities from the method of McLean (1982): �, κa = 0.1; �,
κa = 0.2; �, κa = 0.3.

a given set of wavenumber vectors, this procedure leads to an eigenvalue problem for
the non-dimensional frequency (σ ) of the perturbations, and instabilities correspond
to Im{σ} > 0. We have implemented this method in order to make additional examples
which were not given by McLean.

McLean considered two types of instability, which are defined by the resonance
conditions

k1 + k2 − 2k0 = 0, ω1 + ω2 − 2ω0 = 0, class I, (85)

k1 + k2 − 3k0 = 0, ω1 + ω2 − 3ω0 = 0, class II, (86)

where k0 represents the finite-amplitude carrier wave, while k1 and k2 represent the
perturbations. With the choice of k0 = (κ, 0), these conditions can be satisfied with
perturbations described by

k1 = (1 + p, q)κ, k2 = (1 − p, − q)κ, class I, (87)

k1 = (1 + p, q)κ, k2 = (2 − p, − q)κ, class II. (88)

Note that ω0, ω1 and ω2 are the angular frequencies corresponding to the
wavenumber vectors k0, k1 and k2. While it is common to assume that the frequencies
involved in the resonance conditions satisfy the linear dispersion relation (see e.g.
Phillips 1960; Longuet-Higgins & Phillips 1961; Hogan et al. 1988; Liu & Yue 1998),
we emphasize that it is generally necessary to include amplitude dispersion in order to
fully satisfy these conditions. As the perturbations are assumed to have infinitesimal
wave heights, they cannot influence the angular frequency of the carrier wave ω0,
which is only influenced by self–self interaction. In contrast, the angular frequencies
of the perturbations ω1 and ω2 will be strongly influenced by the wave height of the
carrier wave, while they will experience no self–self interaction. These effects can be
estimated easily using (78) and as a result we can determine the (p, q) values which
satisfy the nonlinear frequency conditions in (85) and (86) for a given value of κa,
where a is the amplitude of the carrier wave.

In the following examples, we consider the case of κh = 2π. Figure 7 shows the
class I resonance curves obtained by solving (85) for four different values of κa. The
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Figure 9. Resonance curves of class II for unidirectional carrier waves (i.e. ϕ = 90◦).
Third-order dispersion relation: (i) κa = 0.0; (ii) κa = 0.2; (iii) κa = 0.3. Points correspond
to dominant instabilities determined by the method of McLean (1982): �, κa = 0.2; �,
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nonlinearity obviously plays an important role in the location of these curves. By
using the fully nonlinear method of McLean, we can determine the position of the
dominant instabilities. They all occur for q = 0, and the points are seen to be close to
the respective third-order resonance curves. A closer inspection of class I resonance
with q = 0 is made in figure 8 which shows the variation of p as a function of κa.
Again the third-order solution is in fairly good agreement with the McLean analysis,
at least for κa < 0.15. Figure 9 shows the class II resonance curves obtained by solving
(86) for three different values of κa. The data points obtained from the method of
McLean are in close agreement with the third-order curves. A closer inspection of
class II resonance with p = 0.5 is made in figure 10 which shows the variation of q

as a function of κa. This leads to the so-called L2 crescent wave formations (see e.g.
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Fuhrman, Madsen & Bingham 2004), and again the agreement with the method of
McLean is very good for κa < 0.25.

6. Resonance conditions for Bragg scattering over an undular sea bed
Water waves travelling over an undular sea bottom are exposed to Bragg scattering,

which typically results in partial reflection of the incoming wavetrain. The interaction
of the surface waves and the bottom ripples is in many ways analogous to the
mechanism of nonlinear wave–wave interaction for surface waves, and resonance
conditions are obtained simply by adding the stationary bottom ripple wavenumbers
to the resonance condition for the surface waves. Three different types of Bragg
scattering have been discussed in the literature with resonance conditions given by

k1 ± k2 ± K = 0, ω1 ± ω2 = 0, class I (89)

k1 ± k2 ± K 1 ± K 2 = 0, ω1 ± ω2 = 0, class II (90)

k1 ± k2 ± k3 ± K = 0, ω1 ± ω2 ± ω3 = 0, class III (91)

where K j are the bottom wavenumber vectors, kj are the surface wavenumber vectors
and ωj are the corresponding angular frequencies. Classes I and II have both been
studied extensively in the literature and can both be treated by linear wave theory.
In contrast, class III Bragg scattering involves nonlinear wave interaction and is a
relatively new phenomenon, first discussed and analysed by Liu & Yue (1998). It
defines a quartet interaction involving one ripple wavenumber vector K and three
surface wavenumber vectors k1, k2 (both being incoming waves) and k3 (the scattered
wave). As a special feature, the scatter arising from class III may result in either a
reflected wave or a transmitted wave depending on the interacting wavenumbers.

In the following we shall concentrate on class III and apply the new third-
order theory to determine the resonance curves. We consider normal incidence and
assume that the two incoming waves are identical, i.e. k2 = k1 = (κ1, 0), k3 = (κ3, 0)
and K = (K, 0). In this case, (91) leads to two possible resonance conditions

κ3 = 2κ1 − K, ω3 = 2ω1, reflection (class III), (92)

κ3 = 2κ1 + K, ω3 = 2ω1, transmission (class III). (93)
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Figure 11. Downshift/upshift of the location of class III Bragg reflection/transmission
as a function of incoming wave steepness κ1c1. The shift is defined as the ratio of the
nonlinear resonance wavenumber κ1 to the linear resonance wavenumber κ01. Specifications:
K = 2.642m−1 and h =1.0m. —–, theoretical solutions for c3/c1 = 0.0 and c3/c1 = 0.5; �,
numerical results from Madsen et al. (2006).

In both cases, the scattered wave will occur at a frequency twice that of the incoming
wave. In order to predict the location of the resonance, Liu & Yue invoked the linear
dispersion relations

ω1 =
√

gκ1 tanh κ1h, ω3 =
√

gκ3 tanh κ3h, (94)

which were solved in combination with (92)–(93) to determine κ1 and κ3 for given h

and K . As an example, they considered K = 2.642 m−1 and h = 1.0 m, which leads to
resonant reflection at κ3 = 0.546K for an incident wavenumber of κ1 = 0.227K , and
resonant transmission at κ3 = 2.195K for an incident wavenumber of κ1 = 0.598K .
While these estimates are valid for infinitesimal incoming waves, they become
inaccurate for increasing nonlinearities. To improve this prediction, we replace (94)
by (78) using U =0. The combination of (92)–(93) and (78) now leads to the
determination of κ1 and κ3 for a given h, K, c1 and c3. Unfortunately, the amplitude
c3 of the scattered wave is unknown until actual Bragg scatter computations have
been made, but typical values of c3/c1 fall in the interval from zero to 0.5 so these
two extremes will be considered. Again we consider the case of K =2.642 m−1 and
h = 1.0 m, and calculate the resonating κ1 and κ3 as a function of the incoming wave
steepness κ1c1.

The results are presented in figure 11 as the ratio κ1/κ01, where κ01 is the result
of applying the linear dispersion relations (94). With increasing nonlinearity we
notice a clear upshift/downshift for the case of transmission/reflection. Actually,
this trend can be seen in the numerical results by Liu & Yue (1998), although
no explanation was given. Additional computations of class III Bragg scatter have
recently been made by Madsen et al. (2006) and these results are included in figure 11.
We notice that for the case of reflection, the numerical results follow the prediction
corresponding to c3/c1 = 0.5, whereas for the case of transmission they follow the
prediction corresponding to c3/c1 = 0. The explanation is the following. In the case of
transmission, the incoming waves upstream of the ripple patch will not be influenced
by the scattered wave until after the patch, hence the resonance over the patch will
occur as if ω1 is not influenced by c3 (i.e. as if c3 is zero), while ω3 will be strongly
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influenced by c1. In the case of reflection, the incoming waves upstream of the patch
will (at least eventually) be influenced by the reflected waves, and in this case ω1 and
ω3 will both be influenced by mutual interactions corresponding to the actual wave
amplitudes c1 and c3.

7. Concluding remarks
In this work, we have derived a new third-order perturbation solution for bi-

directional bichromatic water waves in finite depth. The solution is an extension
of Sharma & Dean (1981) from second-order to third-order, it is an extension of
Hsu et al. (1979) from monochromatic to bichromatic short-crested waves, and it is
an extension of Zhang & Chen (1999) from collinear interactions in infinite depth to
bi-directional interactions in finite depth. The solution includes explicit expressions
for the surface elevation and the vertical variation of the velocity potential, which
is important for the determination of forces on sea walls and breakwaters. We also
explicitly provide the velocity potential at the free surface (Appendix), which is useful
for wavemaking in numerical models. Last but not least, the nonlinear dispersion
relation is generalized to account for many interacting wave components with different
frequencies and amplitudes. This allows for an easy assessment of the phase velocity
of each of the wave components influenced by the presence of numerous others. All
expressions unambiguously include the effect of an ambient current, with the option
of specifying zero net volume flux.

The theory is derived and presented in § § 3.1–3.3, while the resulting depth-averaged
and time-averaged volume flux is determined in § 3.4. Section 3.5 includes the
identification and removal of singularities in the third-order transfer functions. In
contrast to the case of monochromatic short-crested waves, where singularities are
located at the collinear limit, they can be found for any angle in the bichromatic case
(see figure 1). A simple example of a bichromatic short-crested wave at a grazing
angle is computed in § 3.6 (figure 2 and table 1). We emphasize that the surface
shapes turn out to be much more rounded than the similar monochromatic case, and
that there is no problem with the transition from the short-crested solution to the
collinear solution as long as the frequencies are different. This is also in contrast to the
monochromatic grazing angle case, which called for special treatment by Roberts &
Peregrine (1983).

The nonlinear dispersion relation is discussed in detail in § 4. In § 4.1, we generalize
the new expression to account for many interacting wave components with different
frequencies and amplitudes, including the effect of a possible ambient current. Figure 3
shows the amplitude dispersion as a function of the interacting wavenumbers for
collinear waves and for waves at an angle of ± 30◦. In 4.2, we dicuss the infinite-depth
expressions given by, for example, Longuet-Higgins & Phillips (1962), Hogan et al.
(1988), Zakharov (1999) and Zhang & Chen (1999). We compare these expressions
to our new finite-depth formulation and show that inaccuracies occur whenever the
interacting wavenumbers are of similar magnitude (figure 4). The reason is that the
infinite-depth approximations implicitly assume that, for example, tanhh(κn−κm) → 1,
that is, that all interactions (including all possible difference-frequencies) take place in
infinite depth. This assumption is generally not valid and in practice, this is a severe
limitation of, for example, the third-order irregular infinite-depth theory by Zhang &
Chen (1999). Instead, we recommend using the new finite-depth theory for all possible
wave–wave interactions.
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In § 4.3, we discuss the finite-depth Zakharov-type formulation by Agnon (1993).
We have not been able to make this formulation agree with our new perturbation
solution except at the deep-water limit. The reason is apparantly that the Zakharov
kernel function does not have a unique limit in finite depth, and that the result
depends on the direction of the infinitesimal vector in the limiting process. Janssen
& Onorato (2005) have addressed this problem for monochromatic waves in finite
depth, but so far the problem is unresolved for the more general case of bichromatic
bi-directional waves. We expect that the new theory provided in this paper may serve
as a reference for future work on the Zakharov formulation in finite depth.

In § 4.4, we discuss the case of monochromatic short-crested waves in finite and
infinite depth. We show that in this case our theory simplifies to the theory of Hsu et
al. (1979). The amplitude dispersion is shown as a function of wavenumber and wave
angle in figure 5. The validity of the third-order theory is tested by comparing with
the high-order infinite-depth solution by Roberts (1983) in figure 6.

In § 5, we demonstrate the usefulness of the nonlinear dispersion relation, by
computing third-order resonance curves for unidirectional carrier waves and their
three-dimensional infinitesimal perturbation satellites. The influence of nonlinearity
on these curves is demonstrated and the curves are compared to the location of the
dominant class I and class II wave instabilities determined by the numerical method
of McLean (1982) in figures 7 to 10.

In § 6, we compute third-order resonance curves for class III Bragg scattering, which
involves a nonlinear interaction between the incoming waves, the scattered waves and
the sea bottom undulation. This, for the first time, explains the downshift/upshift
of the resonating wavenumbers of the reflected/transmitted waves (figure 11), which
was previously observed by Liu & Yue (1998).

This work has been financed by the Danish Technical Research Council (STVF
Grant no. 9801635) and their support is greatly appreciated.

Appendix. The velocity potential at the free surface
The third-order velocity potential at the free surface for bi-directional bichromatic

waves is expressed as

Φ̃ = U · x + µn(an sin θn − bn cos θn) + µm(am sin θm − bm cos θm)

+ µ2n(A2n sin 2θn − B2n cos 2θn) + µ2m(A2m sin 2θm − B2m cos 2θm)

+ µ+
nm(A+

nm sin(θn + θm) − B+
nm cos(θn + θm))

+ µ−
nm(A−

nm sin(θn − θm) − B−
nm cos(θn − θm))

+ µ3n(A3n sin 3θn − B3n cos 3θn) + µ3m(A3m sin 3θm − B3m cos 3θm)

+ µ13n(an sin θn − bn cos θn) + µ13m(am sin θm − bm cos θm)

+ µ+
n2m(A+

n2m sin(θn + 2θm) − B+
n2m cos(θn + 2θm))

+ µ−
n2m(A−

n2m sin(θn − 2θm) − B−
n2m cos(θn − 2θm))

+ µ+
m2n(A

+
m2n sin(θm + 2θn) − B+

m2n cos(θm + 2θn))

+ µ−
m2n(A

−
m2n sin(θm − 2θn) − B−

m2n cos(θm − 2θn)),
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where

µn = −ω1n coth hκn

κn

, µm = −ω1m coth hκm

κm

,

µ±
nm = F ±

nm coshhκ±
nm − 1

2
h(ω1n ± ω1m),

µ2n = − 1
4
hω1n

(
4 +

3 cosh 2hκn

sinh4 hκn

)
, µ2m = − 1

4
hω1m

(
4 +

3 cosh 2hκm

sinh4 hκm

)
,

µ3n = −h2κnω1n coth hκn

128 sinh6 hκn

(26 − 3 cosh 2hκn + 10 cosh 4hκn + 3 cosh 6hκn),

µ3m = −h2κmω1m coth hκm

128 sinh6 hκm

(26 − 3 cosh 2hκm + 10 cosh 4hκm + 3 cosh 6hκm),

µ13n =
c2
m

2h
(F +

nmκ+
nm sinhhκ+

nm + F −
nmκ−

nm sinhhκ−
nm + ω1m(G+

nm − G−
nm))

+F13n coshhκn +
κnω1n coth hκn

16

(
c2
n

(
1 + coth2 hκn − 7

sinh2 hκn

)
− 4c2

m

)
,

µ13m =
c2
n

2h
(F +

mnκ
+
mn sinhhκ+

mn + F −
mnκ

−
mn sinhhκ−

mn + ω1n(G
+
mn − G−

mn))

+F13m coshhκm +
κmω1m coth hκm

16

(
c2
m

(
1 + coth2 hκm − 7

sinh2 hκm

)
− 4c2

n

)
,

µ
±
n2m = −h2κnω1n coth hκn

4
+

h2κm coth hκm

4 sinh2 hκm

(∓5ω1m − 2ω1n − (ω1n ± ω1m) cosh 2hκm)

+ h(F ±
nmκ±

nm sinhhκ±
nm ∓ ω1mG±

nm) + F
±
n2m coshhκ

±
n2m,

µ
±
m2n = −h2κmω1m coth hκm

4
+

h2κn coth hκn

4 sinh2 hκn

(∓5ω1n − 2ω1m − (ω1m ± ω1n) cosh 2hκn)

+ h(F ±
mnκ

±
mn sinhhκ±

mn ∓ ω1nG
±
mn) + F

±
m2n coshhκ

±
m2n.
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